Maycamp Arena — CbcTe3aHune 7 — CpebbpHa AnBm3ns
22.01.2010 — 25.01.2010

3adaya 1. Osue

NecHo ce 3abensa3Ba, Ye 3a ga HAMepuM Hal-ronamara nornsHa, orpageHa oT AbpBeTa
TOoBa € BCe efHO [a HaMepuM MOMUroHa C Hal-rofamo nuLUe — amy ToBa BCbLLHOCT €
n3nbkHanata obBMBKa Ha BCUYKM AbpBeTa. T.e. 3agadyaTa e cBefeHa 40 HaMupaHe Ha
nsnbkHana obBuBKa 1 crnef ToBa HaMmupaHe Ha NULETO Ha u3nbkHanarta obBuBKa.

Tyk we konmpam matepunanu ot Wikipedia n MathWorld, kouto onuceat anroputmuTe 3a
Te3n aga npobnema.

Graham Scan Algorithm (3a usnbkHana obeueka)

1. B

M
pes

As one can see, A to B and B to C are counterclockwise, but C to D isn't. The algorithm
detects this situation and discards previously chosen segments until the turn taken is
counterclockwise (B to D in this case.)

Maycamp Arena — CbcTe3aHune 7 — CpebbpHa AnBm3ns
22.01.2010 — 25.01.2010

The first step in this algorithm is to find the point with the lowest y-coordinate. If the
lowest y-coordinate exists in more than one point in the set, the point with the lowest x-
coordinate out of the candidates should be chosen. Call this point P. This step takes
O(n), where nis the number of points in question.

Next, the set of points must be sorted in increasing order of the angle they and the point
P make with the x-axis. Any general-purpose sorting algorithm is appropriate for this, for
example heapsort (which is O(n log n)). In order to speed up the calculations, it is not
actually necessary to calculate the actual angle these points make with the x-axis;
instead, it suffices to calculate the cotangent of this angle: it is a monotonically
decreasing function in the domain in question (which is 0 to 180 degrees, due to the first
step) and may be calculated with simple arithmetic.

The algorithm proceeds by considering each of the points in the sorted array in
sequence. For each point, it is determined whether moving from the two previously
considered points to this point is a "left turn" or a "right turn". If it is a "right turn", this
means that the second-to-last point is not part of the convex hull and should be removed
from consideration. This process is continued for as long as the set of the last three
points is a "right turn". As soon as a "left turn" is encountered, the algorithm moves on to
the next point in the sorted array. (If at any stage the three points are collinear, one may
opt either to discard or to report it, since in some applications it is required to find all
points on the boundary of the convex hull.)

Again, determining whether three points constitute a "left turn" or a "right turn" does not
require computing the actual angle between the two line segments, and can actually be
achieved with simple arithmetic only. For three points (X1,Y1), (X2,¥2) and (X3,Vs),
simply compute the direction of the cross product of the two vectors defined by points
(X1,¥1), (Xo,¥2) and (X1,V1), (X3,Y3), characterized by the sign of the expression (Xo —
X1) (V3 = ¥1) = (V2 — y1)(X3 — X7). If the result is 0, the points are collinear; if it is
positive, the three points constitute a "left turn", otherwise a "right turn”.

This process will eventually return to the point at which it started, at which point the
algorithm is completed and the stack now contains the points on the convex hull in
counterclockwise order.

Time complexity

Sorting the points has time complexity O(n log n). While it may seem that the time
complexity of the loop is O(n?), because for each point it goes back to check if any of the
previous points make a "right turn", it is actually O(n), because each point is considered
at most twice in some sense. Each point can appear only once as a point (x3,y3) in a
"left turn" (because the algorithm advances to the next point (x3,y3) after that), and as a
point (x2,y2) in a "right turn" (because the point (x2,y2) is removed). The overall time
complexity is therefore O(n log n), since the time to sort dominates the time to actually
compute the convex hull.

Maycamp Arena — CbcTe3aHune 7 — CpebbpHa AnBm3ns
22.01.2010 — 25.01.2010

Pseudocode

First, define

Three points are a counter-clockwise turn if ccw > 0, clockwise if
ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
gives the signed area of the triangle formed by pl, p2, and p3.
function ccw(pl, p2, p3):

return (p2.x - pl.x)*(p3.y - pl.y) - (p2.y - pl.y)*(p3.x - pl.x)

Then let the result be stored in the array points.

let N = number of points

let points[N+1l] = the array of points

swap points[l] with the point with the lowest y-coordinate
sort points by polar angle with points[1]

We want points[0] to be a sentinel point that will stop the loop.
let points[0] = points[N]

M will denote the number of points on the convex hull.
let M = 2
for i = 3 to N:
Find next valid point on convex hull.
while ccw(points[M-1], points[M], points[i]) <= O0:
M -=1

Swap points[i] to the correct place and update M.
M += 1
swap points[M] with points[i]

This pseudocode is adapted from Sedgewick and Wayne's Algorithms, 4th edition.

Jlnue Ha nonuroH.

Area of a Convex Polygon

The coordinates (xi, y1), (Xz, ¥2), (Xa, ¥5), - - ., (X, ¥n) Of @ convex polygon are arranged in
the "determinant" below. The coordinates must be taken in counterclockwise order
around the polygon, beginning and ending at the same point.

Maycamp Arena — CbcTe3aHune 7 — CpebbpHa anBu3ns
22.01.2010 — 25.01.2010

.t
T 45
11 Tz 3 1
Area = o . =3 [LITLH:; + Xoys +T3ls + - F Tplr) — (Y12 + Yoors + Y3y + -
Ty n
1 i1
Example: 1

Find the area of this polygon:

2]

—4

1
Area = =:[|;E—|——-1—|—25j|—|;—2|]—|— 15+ 2)] = 15

bl | =
o= G U

| o Bl |

